首页> 外文OA文献 >Characterizing Learning by Simultaneous Analysis of Continuous and Binary Measures of Performance
【2h】

Characterizing Learning by Simultaneous Analysis of Continuous and Binary Measures of Performance

机译:通过同时分析连续和二元绩效来表征学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Continuous observations, such as reaction and run times, and binary observations, such as correct/incorrect responses, are recorded routinely in behavioral learning experiments. Although both types of performance measures are often recorded simultaneously, the two have not been used in combination to evaluate learning. We present a state-space model of learning in which the observation process has simultaneously recorded continuous and binary measures of performance. We use these performance measures simultaneously to estimate the model parameters and the unobserved cognitive state process by maximum likelihood using an approximate expectation maximization (EM) algorithm. We introduce the concept of a reaction-time curve and reformulate our previous definitions of the learning curve, the ideal observer curve, the learning trial and between-trial comparisons of performance in terms of the new model. We illustrate the properties of the new model in an analysis of a simulated learning experiment. In the simulated data analysis, simultaneous use of the two measures of performance provided more credible and accurate estimates of the learning than either measure analyzed separately. We also analyze two actual learning experiments in which the performance of rats and of monkeys was tracked across trials by simultaneously recorded reaction and run times and the correct and incorrect responses. In the analysis of the actual experiments, our algorithm gave a straightforward, efficient way to characterize learning by combining continuous and binary measures of performance. This analysis paradigm has implications for characterizing learning and for the more general problem of combining different data types to characterize the properties of a neural system.
机译:在行为学习实验中会定期记录连续观察,例如反应和运行时间,以及二进制观察,例如正确/不正确的响应。尽管经常同时记录两种类型的绩效指标,但并未将两者结合使用来评估学习效果。我们提出了一种学习的状态空间模型,在该模型中,观察过程已同时记录了性能的连续和二进制度量。我们使用这些性能指标同时使用近似期望最大化(EM)算法,通过最大似然估计模型参数和未观察到的认知状态过程。我们介绍了反应时间曲线的概念,并根据新模型重新定义了我们先前对学习曲线,理想观察者曲线,学习试验和性能之间的比较的定义。我们通过对模拟学习实验的分析来说明新模型的属性。在模拟数据分析中,与单独分析的任何一种方法相比,同时使用两种性能的方法可以提供更可靠和准确的学习估计。我们还分析了两个实际的学习实验,其中通过同时记录的反应和运行时间以及正确和不正确的响应来跟踪试验中大鼠和猴子的表现。在实际实验的分析中,我们的算法通过结合连续的和二进制的性能指标,给出了一种简单有效的表征学习特征的方法。这种分析范式对表征学习以及对组合不同数据类型表征神经系统特性这一更普遍的问题具有启示意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号